Degree counting for Toda system of rank two: one bubbling

Young Ae Lee
(Joint works with C.S. Lin, J. Wei, L. Zhang, W. Yang)

The 1st Meeting of Young Researchers in PDEs
Yonsei University, Seoul, Korea
National Institute for Mathematical Sciences.

Aug. 18-19, 2016
Table of contents

1 Mean field equation

2 Toda system
Mean field equation

\((M, g) \) : a compact Riemann surface with volume 1.

\(\Delta \) : Laplace-Beltrami operator.

\(\bullet \) Mean field equation:

\[
\Delta u^* + \rho \left(\frac{h^* e^{u^*}}{\int_M h^* e^{u^*}} - 1 \right) = 4\pi \sum_{q \in S_0} \alpha_q (\delta_q - 1) \text{ in } M \quad (\text{MFE}).
\]

\(h^* \in C^{2,\sigma}(M), \quad h^* > 0, \quad \alpha_q > -1, \quad \rho > 0. \)

\(\delta_q \): Dirac measure at \(q \).

\(q \in S_0 \) : vortex point (or singular source).
Background

\[\Delta u_* + \rho \left(\frac{h_* e^{u_*}}{\int_M h_* e^{u_*}} - 1 \right) = 4\pi \sum_{q \in S_0} \alpha_q (\delta_q - 1) \text{ in } M \quad (MFE). \]

- Geometry:

 \(S_0 = \emptyset \): the Nirenberg problem of prescribed Gaussian curvature,

 \(S_0 \neq \emptyset \): the existence of a positive constant curvature metric with conic singularities.

- Physics: abelian gauge field theory.

- Statistical physics: (MFE) is obtained from the mean field limit of point vortices of Euler flows or spherical Onsager vortex theory.

- Biology: Keller-Segel model

- Lame equation and Painleve equation.
Background (Conformal geometry)

• (M, g): a compact Riemann surface with volume 1.

K_g: Gaussian curvature of (M, g)

• \bar{g} is pointwise conformal to g if $\bar{g} = \rho g$ for some $\rho > 0$.

A conformal map preserves angles but can change lengths.

Denote $\rho = e^{2w}$ and $g_w = e^{2w} g$.

• The behavior at a conic singularity $p_j \in S_0$ is $e^w(z) \sim |z|^{\theta_j - 1}$, where z is the local coordinate which is 0 at p_j, and $2\pi \theta_j > 0$ is the total angle around the singularity p_j.

$$\Delta_{g_w} + K_{g_w} e^{2w} - K_g = \sum_{p_j \in S_0} 2\pi (\theta_j - 1) \delta_{p_j} \text{ in } M.$$
Background (Chern-Simons field theory)

- Chern-Simons field theories have been developed to study high temperature superconductivity. Abelian Chern-Simons models was proposed by [J. Hong, Y. Kim, P.Y. Pac (1990)] and [R. Jackiw, E.J. Weinberg (1990)].

- Chern-Simons Higgs model can be reduced to

\[
\Delta u_\varepsilon + \frac{1}{\varepsilon^2} e^{u_\varepsilon} (1 - e^{u_\varepsilon}) = 4\pi \sum_{j=1}^{N} \delta_{p_j} \quad (CSH).
\]

Theorem (K. Choe, N. Kim (2008))

Let \(u_\varepsilon \) be solutions of (CSH) on a torus \(\mathbb{T} \). Then

(i) \(\lim_{\varepsilon \to 0} \left(\sup_K |u_\varepsilon| \right) = 0, \forall K \subseteq \mathbb{T} \setminus \{p_j\} \); or

(ii) \(u_\varepsilon - 2 \ln \varepsilon \) is uniformly bounded in \(L^\infty_{loc}(\mathbb{T} \setminus \{p_j\}) \); or

(iii) \(\exists \) a finite blow up points set \(S \neq \emptyset \subseteq \mathbb{T} \).

If (ii) occurs, then \(u_\varepsilon - 2 \ln \varepsilon \to \omega \), where \(\omega \) is a solution of (MFE).
Reduced equation without singular sources

• $G(x, y)$: Green function on M.

\[\Delta G(x, p) = -\delta_p + 1 \text{ in } M, \quad \text{and } \int_M G(x, p) = 0. \]

• Denote $u_*(x) = u(x) - 4\pi \sum_{q \in S_0} \alpha_q G(x, q)$.

\[\Delta u_* + \rho \left(\frac{h_* e^{u_*}}{\int_M h_* e^{u_*}} - 1 \right) = 4\pi \sum_{q \in S_0} \alpha_q (\delta_q - 1) \text{ in } M \quad (MFE). \]

\[\iff \]

\[\Delta u + \rho \left(\frac{he^u}{\int_M he^u} - 1 \right) = 0 \text{ in } M \quad (MFE)_0, \]

where $h(x) = h_*(x)e^{-\sum_{q \in S_0} 4\pi \alpha_q G(x, q)} \geq 0$ in M.

\[h(x) \sim |x - q|^{2\alpha_q} \text{ for } |x - q| \ll 1. \]
Normalization

\[\Delta u + \rho \left(\frac{he^u}{\int_M he^u} - 1 \right) = 0 \text{ in } M \quad (MFE)_0, \]

where \(h(x) = h_*(x)e^{-\sum_{q \in S_0} 4\pi \alpha_q G(x,q)} \).

- \((MFE)_0\) is invariant by adding a constant to the solutions.

- We always consider \((MFE)_0\) in the following function space:

\[\hat{H}^1(M) = \left\{ u \in H^1(M) \mid \int_M u = 0 \right\}. \]
A priori bounds of solutions for $(MFE)_0$ in $\dot{H}^1(M)$

\[
\Delta u + \rho\left(\frac{he^u}{\int_M he^u} - 1\right) = 0 \text{ in } M \quad (MFE)_0,
\]

where \(h(x) = h_*(x)e^{-\sum_{q \in S_0} 4\pi \alpha_q G(x,q)} \).

- The set of critical parameters

\[
\Sigma : = \{8N\pi + \Sigma_{p \in A} 8\pi (1 + \alpha_p) \mid N \in \mathbb{N} \cup \{0\}, \ A \subseteq S_0\} \setminus \{0\}.
\]

Theorem (Brezis-Merle (1991), Li-Shafrir (1994), Bartolucci-Tarantello (2002))

Let \(\rho \notin \Sigma \). Then all solutions of $(MFE)_0$ in $\dot{H}^1(M)$ are uniformly bounded.
Leray-Schauder degree d_{ρ}

- Compact operator

$$T_{\rho}u = \rho \Delta^{-1} \left(\frac{he^{u}}{\int_{M} he^{u} dv_{g}} - 1 \right).$$

- By [Brezis-Merle (1991), Li-Shafrir (1994), Bartolucci-Tarantello (2002)], the Leray-Schauder degree

$$d_{\rho} := \deg(I + T_{\rho}, B_{R}, 0)$$

is well defined for $\rho \notin \Sigma$, where $B_{R} = \{ u \in \dot{H}^{1}(M) \mid \| u \|_{H^{1}(M)} \leq R \}$.

- $\Sigma = \{ 8\pi a_{j} \mid a_{1} \leq a_{2} \cdots \}$.

Since the Leray-Schauder degree d_{ρ} is a homotopic invariant for $\rho \in (8a_{j}\pi, 8a_{j+1}\pi)$,

$$d_{\rho} \equiv d_{j}.$$.

Leray-Schauder degree d_ρ

- The set of critical parameters

$$\Sigma = \{8N\pi + \sum_{p \in A} 8\pi(1 + \alpha_p) \mid N \in \mathbb{N} \cup \{0\}, \ A \subseteq S_0 \} \setminus \{0\}$$

$$= \{8\pi a_j \mid a_1 \leq a_2 \cdots \}.$$

From $d_\rho \equiv d_j$ for $\rho \in (8a_j\pi, 8a_{j+1}\pi)$, we denote the generating function by

$$g^{(1)}(x) := \sum_{j=0}^{\infty} d_j x^j.$$

$$g^{(1)}(x) = (1 - x)^{\chi(M) - |S_0| - 1} \prod_{p \in S_0} \left(1 - x^{1+\alpha_p}\right),$$

where $\chi(M)$ is the Euler characteristic of M.
Table of contents

1. Mean field equation

2. Toda system
Toda system

- Consider solution \(u = (u_1, \cdots, u_n) \) of the following system

\[
\Delta u_i + \sum_{j=1}^{n} K_{ij} \rho_j \left(\frac{h_j^* e^{u_j}}{\int_M h_j e^{u_j} dv} - 1 \right) = \sum_{s=1}^{N} 4\pi \alpha_s^i (\delta_{ps} - 1), \text{ in } M,
\]

where \(h_j^* > 0 \), \(K = (K_{ij}) \) is the Cartan matrix of the Lie algebra \(\mathfrak{g} \).

- If the rank of the simple Lie algebra is 2, \(\exists \) three types of corresponding Cartan matrices of rank 2:

\[
A_2 = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}, \quad B_2 = C_2 = \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix}, \quad G_2 = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}.
\]

In general, \(\exists \) four types of simple non-exceptional Lie Algebra:
\(A_m, B_m, C_m, D_m \), whose Cartan subalgebra are \(sl(m+1), so(2m+1), sp(m), so(2m) \).

Corresponding to each of the four types of Lie Algebra, there is a Toda system.
Background

- Solutions of Toda systems are closely related to holomorphic curves in projective spaces.

From the classical Plücker formula, any holomorphic curve gives rise to a solution of A_m type Toda system and the branch points of these curves corresponds to the singularities of the solutions.

On the other hand, if we integrate the A_m Toda system, a solution defines a holomorphic curve in \mathbb{CP}^n at least locally.

- In [S.S. Chern, J.G. Wolfson (1987)], [K. Uhlenbeck (1989)], it was noticed that the general Toda system is an integrable system. The integrability has been further discussed in [C.S. Lin, J. Wei, D. Ye (2012)].

- Algebraic geometry, modular forms, Painlevé VI equation, non-abelian Chern-Simons gauge field theory.
Our main goal

- We want to compute the Leray-Schauder topological degree of the following Toda system of rank two:

\[
\begin{cases}
\Delta u_1 + K_{11}\rho_1 \left(\frac{h_1 e^{u_1}}{\int_M h_1 e^{u_1} d\nu_g} - 1 \right) + K_{12}\rho_2 \left(\frac{h_2 e^{u_2}}{\int_M h_2 e^{u_2} d\nu_g} - 1 \right) = 0 \\
\Delta u_2 + K_{21}\rho_1 \left(\frac{h_1 e^{u_1}}{\int_M h_1 e^{u_1} d\nu_g} - 1 \right) + K_{22}\rho_2 \left(\frac{h_2 e^{u_2}}{\int_M h_2 e^{u_2} d\nu_g} - 1 \right) = 0
\end{cases}
\text{in } M \ (Toda),
\]

where \(h_i(x) = h_i^*(x) e^{-4\pi \sum_{p \in S_i} \alpha_{p,i} G(x,p)} \), \(h_i^* > 0 \), and

\[
K = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}, \quad B_2 = C_2 = \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix}, \quad \text{or} \quad G_2 = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}.
\]
A priori bounds of solutions for (Toda) in $\dot{H}^1(M)$

Theorem (C.S. Lin, J. Wei, L. Zhang)

Let $u = (u_1, u_2)$ be a solution of (Toda) with all $\alpha_{p,i} \in \mathbb{N}$.

Suppose $\rho_1, \rho_2 \notin 4\pi \mathbb{N}$. Then,

$$\|u_1\|_{L^\infty} + \|u_2\|_{L^\infty} \leq C = C(\rho_i, h_i, \alpha_{p,i}, M).$$
Leray-Schauder degree \(d_\rho \)

- By [C.S. Lin, J. Wei, L. Zhang], we can define the Leray-Schauder degree \(d^K_{\rho_1, \rho_2} \) of \((Toda)\) for \(\rho_1 \in (4i\pi, 4(i + 1)\pi) \) and \(\rho_2 \in (4j\pi, 4(j + 1)\pi) \), \(i, j \in \mathbb{N} \cup \{0\} \).

Since the degree \(d^K_{\rho_1, \rho_2} \) is a homotopic invariant for \(\rho_1 \in (4i\pi, 4(i + 1)\pi) \) and \(\rho_2 \in (4j\pi, 4(j + 1)\pi) \), \(i, j \in \mathbb{N} \cup \{0\} \),

\[
d^K_{\rho_1, \rho_2} \equiv d^K_{i, j}.
\]

- The generating function

\[
g_i^{(2)}(x, K) = \sum_{j=0}^{\infty} d^K_{i, j} x^j.
\]

- By [C.C. Chen, C.S. Lin (2015)],

\[
g^{(2)}_0(x) = (1 + x + \cdots)^{1-\chi(M)} \prod_{p \in S_2} (1 + x + \cdots + x^{\alpha_p}).
\]
Main result I: without singularity

• Let \(h_i(x) = h_i^*(x)e^{-4\pi \sum_{p \in S_i} \alpha_{p,i} G(x,p)} \) where \(h_i^* > 0 \), i.e. \(h_i(x) = 0 \iff x \in S_i \).

• \(d_{1,j}^K \): the Leray-Schauder degree of \((Toda)\) for \(\rho_1 \in (4\pi, 8\pi) \) and \(\rho_2 \in (4j\pi, 4(j + 1)\pi), j \in \mathbb{N} \cup \{0\} \).

Theorem (L., C. S. Lin, J. Wei, W. Yang)

Suppose \(S_1 \cup S_2 = \emptyset \) (i.e. \(h_1, h_2 > 0 \)). Then

\[
g_1^{(2)}(x, K) = \sum_{j=0}^{\infty} d_{1,j}^K x^j = (1 - x)^{\chi(M)-1} (1 - \chi(M)(1 + x + \cdots + x^{-K_{21}}))
\]
Main result II: with (simple) singularity

- Let $h_i(x) = h_i^*(x) e^{-4\pi \sum_{p \in S_i} \alpha_{p,i} G(x,p)}$ where $h_i^* > 0$,
i.e. $h_i(x) = 0 \iff x \in S_i$,

- $d_{1,j}^K$: the Leray-Schauder degree of $(Toda)$ for

$\rho_1 \in (4\pi, 8\pi)$ and $\rho_2 \in (4j\pi, 4(j+1)\pi), j \in \mathbb{N} \cup \{0\}$.

Theorem (L., C. S. Lin, W. Yang, L. Zhang)

Suppose $\alpha_{p,i} \in \{0, 1, 2\}, \ i = 1, 2$. Then

$$g_1^{(2)}(x, K) = \sum_{k=0}^{\infty} d_{1,k}^K x^k = (1 - x)^{\chi(M)-1} \left[\prod_{p \in S_2} (1 + x + \cdots + x^{\alpha_{p,2}})
- (\chi(M) - |S_2 \cup S_1|) (1 + \cdots + x^{-K_{21}}) \prod_{p \in S_2} (1 + \cdots + x^{\alpha_{p,2}})
- \sum_{p \in S_2 \setminus S_1} (1 + x + \cdots + x^{\alpha_{p,2}-K_{21}}) \prod_{q \in S_2 \setminus \{p\}} (1 + x + \cdots + x^{\alpha_{q,2}}) \right].$$
Applications

- $\chi(M) = 2 - 2g$, where g denotes the genus of M.

Corollary

Suppose $\alpha_{p,i} \in \{0, 1, 2\}, \ i = 1, 2$.

If $g > 0$, then (Toda) always has a solution when $\rho_1 \in (0, 4\pi) \cup (4\pi, 8\pi)$, $\rho_2 \notin 4\pi \mathbb{N}$.

$$
\begin{cases}
\Delta u_1^* + 2\rho_1 \left(\frac{e^{u_1^*}}{\int_M e^{u_1^*}} - 1 \right) - \rho_2 \left(\frac{e^{u_2^*}}{\int_M e^{u_2^*}} - 1 \right) = 4\pi \sum_{p \in S_1} \alpha_{p,1}(\delta_p - 1), \\
\Delta u_2^* + 2\rho_2 \left(\frac{e^{u_2^*}}{\int_M e^{u_2^*}} - 1 \right) - \rho_1 \left(\frac{e^{u_1^*}}{\int_M e^{u_1^*}} - 1 \right) = 4\pi \sum_{p \in S_2} \alpha_{p,2}(\delta_p - 1).
\end{cases}
$$

on S^2

Corollary

Suppose $S_1 = \emptyset$, $|S_2| = 1, 2$, and $\alpha_{p,2} = 1$ for any $p \in S_2$.

Then the above equation has a solution.
Applications

Suppose $h_1 > 0$ and $h_2 > 0$.
Let $K = A_2$, $\rho_1 \in (4\pi, 8\pi)$, and $\rho_2 \in (4k\pi, 4(k + 1)\pi)$.

Corollary

Let $M = \mathbb{S}^2$. Then

$$d_{1,k}^{A_2} = \begin{cases}
-1, & \text{if } k = 0, \\
-1, & \text{if } k = 1, \\
2, & \text{if } k = 2, \\
0, & \text{if } k \geq 3.
\end{cases}$$

Remark

In [A. Jevnikar, S. Kallel, A. Malchiodi (2015)], it was proved that there exists a solution of (Toda) for any compact surface M.

So if $M = \mathbb{S}^2$ and $k \geq 3$, then (Toda) generically has more than one solution.
The idea of the proof

(i) to introduce the shadow system due to the bubbling phenomena when \(\rho_1 \) crosses \(4\pi \) and \(\rho_2 \notin 4\pi \mathbb{N} \):

Theorem

Suppose \(\alpha_{p,i} \in \mathbb{N} \cup \{0\} \) and \((u_{1k}, u_{2k})\) are solutions of \((Toda)\) with \((\rho_{1k}, \rho_{2k}) \to (4\pi, \rho_2)\) satisfying \(\rho_2 \notin 4\pi \mathbb{N} \) and \(\max_M(u_{1k}, u_{2k}) \to +\infty \). Then

\[
\rho_{1k} \frac{h_1 e^{u_{1k}}}{\int_M h_1 e^{u_{1k}}} \to 4\pi \delta_Q, \quad Q \in M \setminus S_1, \quad \text{and}
\]

\[
u_{2k} \to w + 4\pi K_{21} G(x, Q) \quad \text{in } C^{2,\alpha}_{loc}(M \setminus \{Q\}),
\]

where \((w, Q)\) is a solution of

\[
\begin{cases}
\Delta w + 2\rho_2 \left(\frac{h_2 e^{w+4\pi K_{21} G(x, Q)}}{\int_M h_2 e^{w+4\pi K_{21} G(x, Q)}} - 1 \right) = 0, \\
\nabla \left(\log h_1 e^{\frac{K_{12}}{2} w} \right) \big|_{x=Q} = 0, \quad \text{and } Q \notin S_1,
\end{cases}
\]

(Shadow)
The idea of the proof

(ii) to show how to calculate the topological degree of Toda systems by computing the topological degree of the shadow systems:

- d_j^S: the Leray-Schauder degree for (Shadow) when $\rho_2 \in (4j\pi, 4(j + 1)\pi)$.

Theorem

$$d_{1,j}^K - d_{0,j}^K = -d_j^S.$$

(iii) to calculate the topological degree of the shadow system for one point blow up.
Thank you for your attention!